V dnešním článku se ponoříme do fascinujícího světa Infračervené záření. Od jeho počátků až po jeho dnešní dopad prozkoumáme každý aspekt související s Infračervené záření, abychom pochopili jeho význam v různých oblastech. Od svého vlivu na populární kulturu až po jeho aplikaci v každodenním životě zanechal Infračervené záření ve společnosti nesmazatelnou stopu. Prostřednictvím tohoto článku objevíme jeho mnoho podob a jak se vyvíjel v průběhu času. Připravte se tedy na to, že se ponoříte do cesty Infračervené záření a objevíte vše, co z něj dnes dělá tak zajímavé a relevantní téma.
Infračervené záření (také IR, z anglického infrared) je elektromagnetické záření s vlnovou délkou větší než viditelné světlo, ale menší než mikrovlnné záření.[1][2] Název značí „pod červenou“ (z latiny infra = „pod“). Infračervené záření zabírá ve spektru 3 dekády a má vlnovou délku mezi 760 nm a 1 mm, resp. energii fotonů mezi 0,0012 a 1,63 eV.
Infračervené záření se dále dělí na jednotlivá pásma. Toto dělení ovšem není jednoznačně dané. Jedno schéma je například toto:
Další často používané rozdělení je toto:
Pásmu mezi 100 µm a 1 mm se říká také submilimetrové vlny nebo terahertzové záření.
Infračervené záření je často považováno za „tepelné záření“, avšak faktem je, že povrchy těles zahřívá absorpce libovolného elektromagnetického záření. IR záření zapříčiňuje pouze přibližně 50 % zahřívání zemského povrchu, zbytek je způsoben viditelným světlem.[zdroj?!] Je však pravdou, že objekty při pokojové teplotě emitují nejvíce záření v infračerveném pásmu 8–12 µm.
Infračervené záření se používá pro přenos informací na krátkou vzdálenost, nejčastěji podle standardu IrDA. Příkladem mohou být mobilní telefony s infračerveným portem či dálkové ovladače. Infračervené záření v nich vysílají LED.
Pro účely optické komunikace se IR záření dělí takto:
Infračervená spektroskopie je spektroskopická metoda analytické chemie patřící mezi metody elektromagnetické spektroskopie. Je to jak kvalitativní metoda , která poskytuje velice přesnou identifikaci izolované látky, tak ji lze využít i pro kvantitativní analýzu směsi.
Zemský povrch absorbuje viditelné záření ze Slunce a vyzařuje mnoho energie jako infračervené záření skrze atmosféru zpět do vesmíru. Některé plyny v atmosféře, zejména vodní pára, absorbují toto infračervené záření a vyzařují je zpět ve všech směrech včetně zpět k povrchu Země. Tento takzvaný skleníkový efekt udržuje atmosféru a zemský povrch o 33 °C teplejší, než kdyby plyny pohlcující infračervené záření nebyly v atmosféře přítomny.
Podle odborné studie z roku 2004 nastalo v prvních několika hodinách po dopadu meteoritu k hromadnému "zabíjení" všech nechráněných suchozemských tvorů, kteří se nemohli schovat pod zem (do nor, doupat, skalisek, puklin, apod.) nebo do vody. Důvodem bylo globální tepelné infračervené záření, vytvářené zahřátím vyvržených částeček z místa dopadu (impaktních sférulí), jenž se v ohromných počtech vracely po balistické křivce do nižších vrstev atmosféry. Teplota při povrchu se pak mohla na dobu desítek minut až několika hodin zvýšit asi na 100 až 260 °C, mohlo se tedy jednat o nejvýznamnější faktor pro hromadné vymírání na konci křídy před 66 miliony let.[3]