Dnes je Věta o kritické přímce tématem velkého významu a zájmu mnoha lidí po celém světě. Od starověku byl Věta o kritické přímce předmětem studia, debat a úvah a jeho dopad pokrývá různé aspekty každodenního života. V současné době byla důležitost Věta o kritické přímce posílena vzestupem nových technologií, které otevřely nové perspektivy analýzy a porozumění tomuto tématu. V tomto článku prozkoumáme různé aspekty Věta o kritické přímce, od jeho původu až po jeho dnešní význam, přes jeho implikace v různých oblastech sociálního, kulturního, ekonomického a politického života.
Věta o kritické přímce je matematická věta tvrdící, že jisté, nenulové procento netriviálních nul Riemannovy funkce zeta leží na kritické přímce Re(s) = 1/2.
Riemannova funkce zeta vznikne holomorfním rozšířením funkce na celou komplexní rovinu s výjimkou bodu s = 1. Takto definovaná funkce nabývá nulové hodnoty v každém záporném sudém čísle. Tato čísla se nazývají triviální nuly Riemannovy zeta-funkce. Ostatní body, v nichž je funkce nulová, se nazývají netriviální nuly. Podle Riemannovy hypotézy mají všechny netriviální nuly funkce zeta reálnou část rovnou 1/2, tedy leží na přímce {s | Re(s) = 1/2} v komplexní rovině. Tato přímka se nazývá kritická přímka.
První verzi věty o kritické přímce (pro jisté malé procento) dokázal Atle Selberg, čímž značně vylepšil do té doby nejsilnější známý výsledek Hardyho a Littlewooda, podle kterých leží na kritické přímce nekonečně mnoho netriviálních nul.
Norman Levinson vylepšil odhad ve větě na jednu třetinu nul,[1] a Conrey na dvě pětiny.[2]
Větu o kritické přímce lze považovat za částečné (slabé) řešení Riemannovy hypotézy. Důsledkem Riemannovy hypotézy je, že skutečná hodnota se rovná 1. Ovšem opačná implikace neplatí – tvrzení, že skoro všechny netriviální nuly leží na kritické přímce, pro důkaz Riemannovy hypotézy nestačí.